Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Picard, P. Gougeon* and M. Potel

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes CEDEX, France

Correspondence e-mail:
patrick.gougeon@univ-rennes1.fr

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma($ Mo-S $)=0.001 \AA$
R factor $=0.019$
$w R$ factor $=0.038$
Data-to-parameter ratio $=36.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$: a novel ternary reduced molybdenum sulfide containing $\mathbf{M o}_{\mathbf{6}}$ and $\mathbf{M o}_{\boldsymbol{9}}$ clusters

$\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$ (potassium molybdenum sulfide) crystallizes in the trigonal space group $R \overline{3} c$ and belongs to the $\mathrm{In}_{2} \mathrm{Mo}_{15} \mathrm{Se}_{19}$ structure type. Its crystal structure consists of an equal mixture of $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ and $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ cluster units interconnected through Mo-S bonds. The K^{+}cations occupy large voids between the different cluster units.

Comment

In a previous paper, we reported on the syntheses, structural and theoretical studies, along with physical properties, of an original new family with general formula $\mathrm{Rb}_{2 n}\left(\mathrm{Mo}_{9} \mathrm{~S}_{11}\right)$ $\left(\mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}\right)(n=1$ to 4 ; Picard et al., 2000). All members of the family crystallize in space group $R \overline{3} c$ with $Z=6$ in the hexagonal setting. X-ray diffraction studies on single crystals showed that their crystal structures consist of an equal mixture of $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ and $\mathrm{Mo}_{6 n} \mathrm{~S}_{6 n+2}(n=1$ to 4$)$ cluster units interconnected through Mo-S bonds with the Rb^{+}cations occupying large voids between the different cluster units. Electrical resistivity measurements carried out on single crystals showed that the four members are superconducting, with critical temperatures ranging from 4.2 K to 10.9 K . Investigation of the $\mathrm{K}-\mathrm{Mo}-\mathrm{S}$ system led only to the synthesis of the first member of the series, $\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, which becomes superconducting below 2 K .

The crystal structure of $\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$ (Fig. 1) consists of an equal mixture of $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ and $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ cluster units (Fig. 2) that are centred at positions $6 a$ (D_{3} or 32 symmetry) and $6 b$ (S_{6} or $\overline{3}$ symmetry), respectively. The Mo-Mo distances within the Mo_{6} clusters are 2.6742 (4) \AA for the intra-triangle distances (distances within the Mo_{3} triangles formed by the Mo atoms related through the threefold axis) and 2.7730 (4) Å for the inter-triangle distances. The Mo-Mo distances within the Mo_{9} clusters are 2.6779 (4) and 2.6870 (5) \AA for the intratriangle distances between the Mo1 and Mo2 atoms, respectively, and 2.7132 (4) and 2.7863 (4) \AA for those between the Mo_{3} triangles. The S atoms bridge either one (S1, S3, St1 and $\mathrm{S} t 2$) or two (S2) Mo triangular faces of the clusters. Moreover the S1 and S3 atoms are linked to a Mo atom of a neighboring cluster.

Compared to $\mathrm{Rb}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, the $\mathrm{Mo}-\mathrm{Mo}$ and $\mathrm{Mo}-\mathrm{S}$ distances in both units are quite similar to those observed in the Rb analogue since the greatest differences are 0.006 and $0.01 \AA$ for the Mo-Mo and Mo-S bonds, respectively. This clearly shows that the number of electrons per Mo_{6} and Mo_{9} clusters should be almost the same in both compounds. Each $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ unit is interconnected to six $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ units (and vice versa) via $\mathrm{Mo} 1-\mathrm{S} 3$ bonds (Mo3-S1, respectively) to form the three-dimensional Mo-S framework, the connective formula of which is $\mathrm{Mo}_{9} \mathrm{~S}_{5}^{i} \mathrm{~S}^{i-a}{ }_{6 / 2} \mathrm{~S}^{a-i}{ }_{6 / 2}, \mathrm{Mo}_{6} \mathrm{~S}_{8}^{i} \mathrm{~S}^{i-a}{ }_{6 / 2} \mathrm{~S}^{a-i}{ }_{6 / 2}$.

Received 26 November 2001 Accepted 18 December 2001 Online 11 January 2002

Figure 1
View of $\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{15}$ along [010].

As a result of this arrangement, the shortest intercluster $\mathrm{Mo} 1-\mathrm{Mo} 3$ distances between the Mo_{6} and Mo_{9} clusters is 3.2169 (4) \AA, indicating only weak metal-metal interaction. The latter value is slightly shorter than the value of 3.246 (2) \AA observed for $\mathrm{Rb}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$, as expected from the smaller size of the K^{+}cations. The alkali metal cations occupy sites along the threefold axis between two consecutive $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ and $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ units in a distorted pentacapped trigonal prismatic environment of S atoms.

Experimental

Single crystals of $\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$ were obtained from a stoichiometric mixture of $\mathrm{K}_{2} \mathrm{MoS}_{4}, \mathrm{MoS}_{2}$ and Mo. The potassium thiomolybdate was obtained by sulfuration of $\mathrm{K}_{2} \mathrm{MoO}_{4}$ at 723 K for two days under CS_{2} gas carried by flowing argon. The molybdate $\mathrm{K}_{2} \mathrm{MoO}_{4}$ was synthesized by heating an equimolar ratio of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MoO_{3} in an alumina vessel at 1073 K in air over two days. All handling of materials was performed in an argon-filled glove box. The initial mixture ($c a 5 \mathrm{~g}$) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arcwelding system. The charge was heated at the rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$ to

Figure 2
Plot showing the atom-numbering scheme and the inter-unit linkage of the $\mathrm{Mo}_{6} \mathrm{~S}_{8}$ and $\mathrm{Mo}_{9} \mathrm{~S}_{11}$ cluster units. Displacement ellipsoids are drawn at the 97% probability level.

1873 K , a temperature which was held for 6 h , then cooled at 100 K h^{-1} to 1373 K and finally furnace cooled.

Crystal data

$\mathrm{K}_{2} \mathrm{Mo}_{15} \mathrm{~S}_{19}$
$M_{r}=2126.44$
Trigonal, $R \overline{3} c$
$a=9.3857$ (9) Å
$c=56.261$ (9) \AA
$V=4292.1(9) \AA^{3}$
$Z=6$
$D_{x}=4.936 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta-2 \theta$ scans
Absorption correction: ψ-scan
(North et al., 1968)
$T_{\text {min }}=0.501, T_{\text {max }}=0.527$
4181 measured reflections
2102 independent reflections
1753 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.038$
$S=1.09$
2102 reflections
58 parameters

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=6.3-15.2^{\circ}$
$\mu=8.00 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Pseudo-cube, black
$0.10 \times 0.10 \times 0.08 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.016 \\
& \theta_{\max }=34.9^{\circ} \\
& h=0 \rightarrow 15 \\
& k=0 \rightarrow 15 \\
& l=-90 \rightarrow 90 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \quad \text { intensity decay: }<1 \%
\end{aligned}
$$

[^0]
inorganic papers

Table 1
Selected interatomic distances (\AA).

Mo1-St1	2.4191 (7)	Mo3-St2	2.4217 (7)
Mo1-S1	2.4294 (6)	Mo3-S1 ${ }^{\text {v }}$	2.4330 (6)
Mo1-S1 ${ }^{\text {i }}$	2.4766 (6)	Mo3-S3 ${ }^{\text {vi }}$	2.4399 (6)
$\mathrm{Mo} 1-\mathrm{S} 3^{\text {ii }}$	2.4917 (6)	Mo3-S3	2.4588 (6)
Mo1-S2 ${ }^{\text {iii }}$	2.6206 (5)	Mo3-S3 ${ }^{\text {iii }}$	2.4659 (6)
Mo2-S1	2.3922 (6)	$\mathrm{K}-\mathrm{S}^{\text {vii }}$	3.1776 (6)
$\mathrm{Mo} 2-\mathrm{S} 1^{\text {iv }}$	2.3922 (6)	$\mathrm{K}-\mathrm{S} t 2$	3.3203 (16)
$\mathrm{Mo} 2-\mathrm{S} 2^{\text {i }}$	2.4700 (6)	$\mathrm{K}-\mathrm{St} 1$	3.5952 (16)
Mo2-S2 ${ }^{\text {iii }}$	2.4700 (6)	$\mathrm{K}-\mathrm{S} 3^{\text {viii }}$	3.7234 (9)

Symmetry codes: (i) $-y, x-y, z$; (ii) $\frac{1}{3}+x, \frac{2}{3}+x-y, \frac{1}{6}+z$; (iii) $-x+y,-x, z$; (iv) $x-y,-y, \frac{1}{2}-z$; (v) $\frac{2}{3}-x+y, \frac{1}{3}+y, z-\frac{1}{6}$; (vi) $y,-x+y,-z$; (vii) $x-y-\frac{1}{3}, x-\frac{2}{3}, \frac{1}{3}-z$; (viii) $\frac{1}{3}+x-y, \frac{2}{3}-y, \frac{1}{6}-z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: WinGX (Farrugia,
1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

References

Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.
Enraf-Nnius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Picard, S., Saillard, J.-Y., Gougeon, P., Noel, H. \& Potel, M. (2000). J. Solid State Chem. 155, 417-426.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0122 P)^{2}\right.$
 $+8.4803 P]$
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }=0.001$
 $\Delta \rho_{\text {max }}=0.81 \mathrm{e}^{\text {A }}{ }^{-3}$
 $\Delta \rho_{\text {min }}=-0.87 \mathrm{e}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.000086 (4)

